| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • You already know Dokkio is an AI-powered assistant to organize & manage your digital files & messages. Very soon, Dokkio will support Outlook as well as One Drive. Check it out today!

View
 

Biology-HS

Page history last edited by Gail Holmes 13 years, 3 months ago

Biology

 

Domain

Standard

Cluster

Text of Objective

Web Tool

Instructions for Use

Structures and Functions of Living Organisms:

 

Bio.1.1.1

Understand the relationship between the structures of cells and their organelles.

 

Summarize the structure and function of organelles in eukaryotic cells (including: the nucleus, plasma membrane, cell wall, mitochondria, vacuoles, chloroplasts, and ribosomes) and ways that these organelles interact with each other to perform the function of the cell.

 

 

Bio.1.1.2

Compare prokaryotic and eukaryotic cells in terms of their general structures (plasma membrane and genetic material) and degree of complexity.

 

 

Bio.1.1.3

Explain how instructions in DNA lead to cell differentiation and result in cells specialized to perform specific functions in multi-cellular organisms.

 

 

Structures and Functions of Living Organisms

 

Bio.1.2.1

Analyze the cell as a living system.

Explain how homeostasis is maintained in a cell and within an organism in various environments (including: temperature and pH).

 

 

Bio.1.2.2

Analyze how cells grow and reproduce in terms of interphase, mitosis and cytokinesis.

 

 

Bio.1.2.3

Explain how specific cell adaptations help cells survive in particular environments (focus on unicellular organisms).

 

 

Ecosystems 

Bio.2.1.1

Analyze the interdependence of living organisms within their environments.

Analyze the flow of energy and cycling of matter (such as water, carbon, nitrogen and oxygen) through ecosystems relating the significance of each to maintaining the health and sustainability of an ecosystem.

 

 

Bio.2.1.2

Analyze the survival and reproductive success of organisms in terms of behavioral, structural, and reproductive adaptations.

 

 

Bio.2.1.3

Explain various ways organisms interact with each other (including predation, competition, parasitism, mutualism) and with their environments resulting in stability within ecosystems.

 

 

Bio.2.1.4

Explain why ecosystems can be relatively stable over hundreds or thousands of years, even though populations may fluctuate (emphasizing availability of food, availability of shelter, number of predators and disease).

 

 

Bio.2.2.1

Understand the impact of human activities on the environment (one generation affects the next).

Infer how human activities (including population growth, pollution, global warming, burning of fossil fuels, habitat destruction and introduction of nonnative species) may impact the environment.

 

 

Bio.2.2.2

Explain how the use, protection and conservation of natural resources by humans impact the environment from one generation to the next.

 

 

Evolution and Genetics

Bio.3.1.1

Explain how traits are determined by the structure and function DNA.

Explain the double-stranded, complementary nature of DNA as related to its function in the cell.

 

 

Bio.3.1.2

Explain how DNA and RNA code for proteins and determine traits.

 

 

Bio.3.1.3

Explain how mutations in DNA that result from interactions with the environment (i.e. radiation and chemicals) or new combinations in existing genes lead to changes in function and phenotype.

 

 

 

Bio.3.2.1

Understand how the environment, and/or the interaction of alleles, influences the expression of genetic traits.

Explain the role of meiosis in sexual reproduction and genetic variation.

 

 

 

Bio.3.2.2

Predict offspring ratios based on a variety of inheritance patterns (including: dominance, codominance, incomplete dominance, multiple alleles, and sex-linked traits).

 

 

 

Bio.3.2.3

Explain how the environment can influence the expression of genetic traits.

 

 

 

Bio.3.3.1

Understand the application of DNA technology

Interpret how DNA is used for comparison and identification of organisms.

 

 

 

Bio.3.3.2

 

Summarize how transgenic organisms are engineered to benefit society.

 

 

 

Bio.3.3.3

 

Evaluate some of the ethical issues surrounding the use of DNA technology (including: cloning, genetically modified organisms, stem cell research, and Human Genome Project).

 

 

 

Bio.3.4.1

Explain the theory of evolution by natural selection as a mechanism for how species change over time.

Explain how fossil, biochemical, and anatomical evidence support the theory of evolution.

 

 

 

Bio.3.4.2

 

Explain how natural selection influences the changes in species over time.

 

 

 

Bio.3.4.3

 

Explain how various disease agents (bacteria, viruses, chemicals) can influence natural selection.

 

 

 

Bio3.5.1

Analyze how classification systems are developed upon speciation.

Explain the historical development and changing nature of classification systems.

 

 

 

Bio.3.5.2

 

Analyze the classification of organisms according to their evolutionary relationships (including: dichotomous keys and phylogenetic trees).

 

 

Molecular Biology

Bio.4.1.1

Understand how biological molecules are essential to the survival of living organisms.

Compare the structures and functions of the major biological molecules (carbohydrates, proteins, lipids, and nucleic acids) as related to the survival of living organisms.

 

 

Bio.4.1.2

Summarize the relationship among DNA, amino acids and proteins in carrying out the work of cells and how this is similar in all organisms.

 

 

Bio.4.1.3

Explain how enzymes act as catalysts for biological reactions.

 

 

 

Bio.4.2.1

Analyze the relationships between biochemical processes and energy use in the cell.

Analyze photosynthesis and cellular respiration in terms of how energy is stored, released, and transferred within and between these systems.

 

 

 

Bio.4.2.2

 

Explain ways that organisms use released energy for maintaining homeostasis (active transport).

 

 

 

 

 

 

 

 

 

Comments (0)

You don't have permission to comment on this page.